Source code for kospeech.optim.__init__

# Copyright (c) 2020, Soohwan Kim. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from kospeech.optim.adamp import AdamP
from kospeech.optim.radam import RAdam
from kospeech.optim.novograd import Novograd


[docs]class Optimizer(object): """ This is wrapper classs of torch.optim.Optimizer. This class provides functionalities for learning rate scheduling and gradient norm clipping. Args: optim (torch.optim.Optimizer): optimizer object, the parameters to be optimized should be given when instantiating the object, e.g. torch.optim.Adam, torch.optim.SGD scheduler (kospeech.optim.lr_scheduler, optional): learning rate scheduler scheduler_period (int, optional): timestep with learning rate scheduler max_grad_norm (int, optional): value used for gradient norm clipping """ def __init__(self, optim, scheduler=None, scheduler_period=None, max_grad_norm=0): self.optimizer = optim self.scheduler = scheduler self.scheduler_period = scheduler_period self.max_grad_norm = max_grad_norm self.count = 0 def step(self, model): if self.max_grad_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), self.max_grad_norm) self.optimizer.step() if self.scheduler is not None: self.update() self.count += 1 if self.scheduler_period == self.count: self.scheduler = None self.scheduler_period = 0 self.count = 0 def set_scheduler(self, scheduler, scheduler_period): self.scheduler = scheduler self.scheduler_period = scheduler_period self.count = 0 def update(self): if isinstance(self.scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): pass else: self.scheduler.step() def zero_grad(self): self.optimizer.zero_grad() def get_lr(self): for g in self.optimizer.param_groups: return g['lr'] def set_lr(self, lr): for g in self.optimizer.param_groups: g['lr'] = lr