Criterion¶
Joint CTC-CrossEntropy Loss¶
-
class
lightning_asr.criterion.joint_ctc_cross_entropy.
JointCTCCrossEntropyLoss
(num_classes: int, ignore_index: int, dim: int = - 1, reduction='mean', ctc_weight: float = 0.3, cross_entropy_weight: float = 0.7, blank_id: Optional[int] = None)[source]¶ Privides Joint CTC-CrossEntropy Loss function
- Parameters
num_classes (int) – the number of classification
ignore_index (int) – indexes that are ignored when calculating loss
dim (int) – dimension of calculation loss
reduction (str) – reduction method [sum, mean] (default: mean)
ctc_weight (float) – weight of ctc loss
cross_entropy_weight (float) – weight of cross entropy loss
blank_id (int) – identification of blank for ctc
Label Smoothed CrossEntropy Loss¶
-
class
lightning_asr.criterion.label_smoothed_cross_entropy.
LabelSmoothedCrossEntropyLoss
(num_classes: int, ignore_index: int, smoothing: float = 0.1, dim: int = - 1, reduction='mean')[source]¶ Label smoothed cross entropy loss function.
- Parameters
num_classes (int) – the number of classfication
ignore_index (int) – Indexes that are ignored when calculating loss
smoothing (float) – ratio of smoothing (confidence = 1.0 - smoothing)
dim (int) – dimension of calculation loss
reduction (str) – reduction method [sum, mean] (default: sum)
- Inputs: logits, target
logits (torch.Tensor): probability distribution value from model and it has a logarithm shape target (torch.Tensor): ground-thruth encoded to integers which directly point a word in label
- Returns: label_smoothed
label_smoothed (float): sum of loss